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The effect of viscosity and heat conduction on 
internal gravity waves at a critical level 
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The differential equation for the vertical velocity of a gravity wave in an invis- 
cid shear flow is singular at  a level where the mean fluid velocity is equal to the 
horizontal phase velocity of the waves. It has been shown that a wave travelling 
through such a layer has its amplitude attenuated by a constant factor dependent 
on the local Richardson number. In this paper the results obtained by solving 
numerically the full sixth order differential equation, which is derived by includ- 
ing viscosity and heat conduction in the problem, (and is not singular) are dis- 
cussed, and the surneattenuation factor is found. Some experiments which confirm 
certain aspects of the theory are described in an appendix. 

Introduction 
Recently Booker & Bretherton (1967) considered the problem of internal 

gravity waves in a shear flow with a critical level, i.e. a level where the mean 
fluid velocity is equal to the horizontal phase velocity of the waves. For an in- 
viscid fluid, the differential equation for the vertical velocity is singular at such 
a level for all real phase velocities. However, by allowing the phase velocity to 
have a slightly imaginary part, and by looking at  the asymptotics of the time- 
dependent initial value problem, they were able to obtain a matching condition 
across the singular point, namely that a wave travelling through the critical level 
has its amplitude attenuated by a factor of epn where ,u is given by (R - a)*, R being 
the Richardson number at  that level. The linearized velocity obtained by this 
method eventually tends to infinity at  the critical level, thus vitiating the linear- 
ization. Bretherton (1 966) has also considered the wave-packet approach. 

For a steady input, however, viscosity and heat conduction may play a more 
important role than non-linear effects. The differential equation for this problem 
is one of the sixth order, and is no longer singular at  the critical level, even if the 
phase speed is kept strictly real. Two of its solutions tend to the inviscid solutions 
asymptotically well uwuy from the critical level; the other four ‘viscous’ solutions 
are not negligible near this level, and so the coefficients of the inviscid solutions 
on either side must be determined from the full equation. It is not upriori evident 
that the matching condition across the critical level will be the same as that for 
the inviscid initial value problem, although this is known to be true for the critical 
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level in a boundary layer. The equation in this case has a much worse singularity 
than the boundary -layer problem, both inviscid solutions being singular at the 
critical level. Nevertheless, numerical computations on the full sixth-order 
equation show that the matching condition is in fact the same as the one for the 
initial value problem. 

1. The problem 
We consider a two-dimensional, steady flow, with mean wind ( U ( z ) ,  0) and 

a perturbation (u(x, z), w(x, 2)). Making a Boussinesq approximation, we then 
have the following linearized equations: 

Uux+wu,+(l~p)px-vv2u = 0, 

uw,+Q+(l/p)p,z:-vv2w = 0, 

uz+w2. = 0, 

Ugx - N2w = RV2v, 
where v is the kinematic viscosity, K the coefficient of heat conductivity, N the 
Brunt-Vaisak frequency, and CT the buoyancy force per unit mass. Taking the 
Fourier transform of the vertical velocity, such that 

00 

w(z, z )  = 1 ~ ( z ,  k) eikxdk, 
-02 

elimination of u, Q and p leads to the general equation for 8, namely 

[ ikU-K(D2-k2) ]  [ { - i k U + ~ ( D ~ + 2 k ~ ) } D ~ + i k ( U , +  Uk2) + ~ k ~ + k ' N ' ] &  == 0, 
(1.5) 

where D = d/dz. 
If v and K are sufficiently small, viscosity and heat conduction will only be 

important in a narrow region near the critical level. In  this region we make the 
approximations that k2 < D2 (the hydrostatic approximation), and that N 2  
and d U / d z  are constant. Choose the origin of z such that z = 0 is the critical level. 
Then U = U,z in this region, and the equation simplifies to 

[ ( % D ~ + z )  ($sD2+z)D2+R]b = 0, 

where R is the Richardson number N2/U,2. A natural scale for the problem is 
given by zo = (v/kU,)Q; the viscous terms being negligible for 1x1 $ zo. Thus 
we 'normalize' the equation by making the transformation z = z o [ ,  so that the 
inviscid region is now 151 & 1. The transformed equation is 

[(iP-l$, + E )  (i$ + 5) $+R]8 = 0, 

where P is the Prandtl number. 

Limitations 

Suppose the shear dUldz  is varying in the large over at  length scale H .  Then we 
must have zo < H for the assumptions made in deriving (1.6) from (1.5) to hold. 



Internal gravity waves at a critical level 777  

Also we require z o  < l / k ,  which is satisfied for a wide range of k, including all 
practical cases. 

Assuming the mean flow to be independent of x, the momentum equation for 
the mean horizontal velocity is 

au a 
- + - ( U W ) +  !2 - v q B  = 0, 
at a2 ax 

where +lax may depend on z .  The second term represents momentum changes 
in the mean flow due to vertical changes in the Reynolds stress. Note that the 
mean flow is not in fact an exact solution of the equations;? however, the steady- 
state perturbation analysis can be justified by a comparison of time scales. The 
time scale for the variations in the mean flow due to viscosity is given by H 2 / v ;  
we require that this be very much larger than the time scale for changes in the 
critical layer due to fluctuations in the input, i.e. the time scale for a steady state 
t o  develop. In  their initial value analysis, Booker & Bretherton found the critical 
layer at any time to have thickness proportional to (kU,t)-l, hence the time scale 
for fluctuations in the critical layer is (k&z0)-l. Thus for the steady-state analysis 

to be valid, we require 1 v  0 

< 1 .  

This assumption has already been made above, and so steady-state analysis is 
justified. 

2. Asymptotics for large 151 
Analytic solutions of (1 .7 )  can be obtained in the form of power series or 

contour integrals. However, it proved impossible to match these to asymptotic 
series for large and so a numerical approach to the problem was used. Never- 
theless, some information about the asymptotics is required to give starting 
values for the integration. A solution of the form ZG = cmeq@ (m, q constant) 
is suggested by considering the equation in the case P-l = R = 0 for large I 61. 
From this it is straightforward, though tedious, to obtain the following leading 
terms for the six asymptotic solutions for large positive < and (P+ 1)l: 

+ ot-6) , (2 .1)  

+ 05-6) , (2.2) 

R( 1 + P-l) (2p + 5i - [4i/ 1 + PI) 
&I = A,@+% 1 + ____ .- 

12,y 

1253 
R( 1 + P-l) ( 2 , ~  - 5i - [ 4i/ 1 + PI ) 

. ~ _ _  

( 

ZG3 = A3c-%e++di@(l + 0[-3), (2 .3)  

(2.4) w4 A = A,[-P e-b'i ( 1  + 0 6 - 3 )  

8, = A ,  c-2 e+b'(i 5% ( 1  + 05--3), (2 .5 )  

(2.6) w6 A A6t-S e-%-\/(iP)t;* (1 + 0 6 - 3 )  

where ,u = (R- 4);. Similar solutions, but with different constants, are obtained 
for large negative 6. The leading terms of ZG, and zi, are the solutions of the second- 

t cf. stability theory. 
$ cf. Koppel (1964). The case P = 1 has been given exhaustive analytical treatment 

by Koppel (1964) and Hughes & Reid (1967). 
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order inviscid equation, and represent an upward and a downward travelling 
wave respectively,? while the remaining ‘viscous’ solutions a3 to a,, are of ex- 
ponential type, two decaying as -+ + 00, and two as c -+ - co. 

3. Numerical solution 
The problem posed for numerical solutions was to obtain a complete solution, 

continuous through the critical level, starting from an upward travelling wave 
of known amplitude a t  -a. The following procedure was adopted: as well as 
the input wave, a possible reflected wave and the two viscous solutions that go 
to zero at - co, all of unknown amplitude, were assumed to exist below the critical 
level, while above it a transmitted wave and the two other viscous solutions 
were assumed. Each of the four solutions in c < 0 and the three in 5 > 0 were 
integrated separately in to zero from equidistant points on their respective sides of 
the critical level. The unknown (complex) amplitudes were then determined by 
matching the solution and its first five derivatives at  the origin. Using these 
amplitudes, a complete solution was obtained. 

The starting values for the integrations were obtained from the asymptotic 
forms of $ 3 ,  using the same conventions as Booker & Bretherton for the wave 

and @-ip = - i e - p n I ~ I + e - i p W C I  (5 ‘0). (3.3) 

The other ‘viscous’ solutions were taken according to the same convention.$ 
The best position for the starting-point of the integration was determined 

by trial and error. It was found that starting too near to zero gave a solution in 
which the viscous terms still played a significant part at  the starting-point, while 
starting too far out introduced too much of the exponentially growing solutions. 
The value of a,, for example, at 6 = 10 is of the order of 1OZo x A,, and so any 
attempt to start further out is doomed to numerical failure. A starting-point in 
the region of 5 = 6.0 was found to be the best compromise. A steplength of 0.05 
was used most of the time, while the values of the Prandtl and Richardson num- 
bers were taken as 7.0 and 3.0 respectively; the effect of varying all three of these, 
however, was investigated, although for R > 4, the numerical errors due to the 
large value of e p n  gave inconsistent results, while for R close to t, the numerical 
problem became ill conditioned. The actual integration was carried out on the 
digital computer TITAN by means of a standard Runge-Kutta-Gill Library 
subroutine. 

4. Results ( a )  Transmitted wave 
It was found, in agreement with Booker & Bretherton, that the amplitude of the 
wave transmitted through the critical level was severely attenuated by a factor 
close to their figure of epn. As this factor was explicitly included in the incident 

t See Booker & Bretherton (1967) for a discussion of this interpretation. 
$ Note: in the published form of Booker & Bretherton’s paper, there are misprints iii  

these equ:it,ions. The above forms are the correct ones. 
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Y O  
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0.6534 
0.6118 
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35.2079 
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1.1133 
1.0847 
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0.7490 
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- 0.8209 
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FIGURE 1. The column headed ' Coefficient' gives the complex coefficient of the transmitted 
wave, while the one headed ' yo difference' gives the percentage difference between the 
ratio of the Reynolds stresses on either side of the critical layer and e 2 / n .  A negative sign 
indicates that the ratio is less than e W .  The variations in the values of the coefficient are 
consistent with fluctuations due to truncation error in the starting values. 

\ . . 
'.. +I:- \ 

FIGURE 2. -, Reynolds stress; ---, imaginary part; ---, real part. 



780 Philip Hazel 

wave (see equation (3.1)) a complex coefficient of unity for the transmitted wave 
would have indicated complete agreement. Figure 1 is a table showing typical 
coefficients and other relevant results for various values of the parameters. The 
complete solution through the critical level is shown in figure 2; the magnitude 
of the viscous terms is completely negligible at the starting-points, and the 
solution has been matched to a purely inviscid solution there. 

- Uncorrected starting values - - Corrected starting values 
,--. + 
7 a 
EI 

a 
z 1% - 
2 - . 
5j - 0.5% - z 
E - 

Starting-poi11 t 

FIGURE 3 

( b )  Refiected wave 

From the numerical calculations a very small reflected wave is predicted. 
However, careful checking indicates that this is a result of the numerical method, 
introduced by starting the integration at a finite point, and by using only an 
approximation to the asymptotic forms of the wave solutions for starting values. 
When only the first terms of (2.1) and (2.2) are used to give the starting values, 
the ratio of the modulus of the reflected wave to the modulus of the incident wave 
decreases approximately as SP with increasing starting-point S.  Using the 
first two terms reduces this ratio by a factor of 10, and it now decreases as S-6. 
9 - 3  and 8 - 6  are, of course, the order of the first neglected term in the starting 
values in each case. Figure 3 is a graph of the ratio of the moduli of the reflected 
and incident waves for different starting points. Extrapolation to infinite starting 
point implies no reflected wave. 

( c )  Reynolds stress 

The Reynolds stress for a typical solution is shown in figure 2. It is constant, 
as expected, throughout the regions where viscosity plays no part, but decreases 
almost Linearly through a region just below the critical level to the small value it 
has above the level. The ratio of the stress at  - KI to that at  + co is found to be 
close to the value of -e2fin predicted by Booker & Bretherton (see figure 1). 
The fact that the decrease in stress takes place below the critical level indicates, 
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by (1.8), that the momentum transfer to the mean flow from the waves, as they 
are attenuated, takes place in this region. 

( d )  Critical layer thickness 

From the numerical results obtained, it appears that the effect of viscosity is 
important only in a critical layer around the critical level, a layer thicker below 
the critical level than above it (for upward travelling waves). In  the particular 
cases investigated, the total thickness was about seven units of 5, i.e. about 
72, true units of height, 52, of this lying below the critical level. For a horizontal 
wavelength of 10 km in the atmosphere, z,, is about 1 m, while for a wavelength 
of 10 em in water in the laboratory, zo is about 0.2 em. The figure of 1 m for the 
atmosphere is negligibly thin, indicating that in practice turbulent dissipation 
will take over from viscosity. 

5. Conclusion 
From the numerical calculations performed on the full sixth-order equation, 

the matching condition for a gravity wave passing through a critical level is 
found to be independent of viscosity and heat conduction, although the actual 
form of the wave near this level is radically altered. No reflected wave occurs 
and the surplus momentum from a wave which is attenuated is taken up by the 
mean flow in a thin layer just below the critical level. 

The above conclusions, taken in conjunction with those of Booker & Brether- 
ton, and those of Jones (1967), who has investigated the initial value problem 
in the rotating case, and found the same transmission coefficient yet again, 
indicate that the actual structure of the wave in the critical layer is a 
secondary effect, and quite irrelevant to the absorption mechanism, which plays 
a role analogous to that of viscosity in turbulent dissipation. 

I am greatly indebted to Dr. F. P. Bretherton for a lot of very helpful hints and 
advice in connexion with this paper, and for interesting me in the problem in the 
first place. 

Appendix 
BY F. P. BRETHERTON, P. HAZEL, S. A. THORPE-~ AND I. R. WOOD$. 

Department of Applied Mathematics and Theoretical Physics, University of Cambridge. 

Figures A 1 and A2 demonstrate critical layer absorption taking place in the 
laboratory in the lee-wave train behind a small obstacle. 

They were obtained using an enclosed rectangular Perspex-sided tank 4 m 
long, 7.5 em wide, 10 em high, which was pivoted about a horizont,al axis parallel 
to the shortest side. It was tilted until the longest side was inclined at  about 20" 
to the horizontal and filled, following Oster (1965)§, with a stratified salt solution 
(2 x0 to 5 %,) marked at intervals with layers of dye, and then slowly Iowered 

t Now at: National Institute of Oceanography, Wonnley, Surrey. 
1 Permanent address: University of New South Wales, Sydney, Australia. 
Q See p. 74, 'instant' density gradient. 
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to the horizontal position. After the fluid had come completely to rest, the density 
was to a good approximation a linear function of the height z, (i.e. N2 = constant) 
except very near the upper and lower boundaries, with the dye in predetermined 
sheets. The tank was then tilted through about 5' for a few seconds and restored 
to ths horizontal. In  this time the buoyancy forces set up a shear flow with a 
velocity profile determined by the stratification and angle and duration of tilt. 
This flow was independent of distance along the tank (except near the ends), and 
also independent of time until internal waves had propagated from the ends to 
the point under consideration. When the latter arrived (after 25s) the flow 

FIGURE A 3. A typical upstream velocity profile is shown, together with the initial levels of 
the dye streaks, H, and the approximate thickness of the critical layer (72,), as predicted by 
the numerical results in the main paper, B. 

reversed. The lee-wave train behind the obstacle (a machined block of Perspex 
extending across the tank, with triangular cross-section, 4 ern broad at  the base, 
0.6 ern high) had developed to an apparently steady state before this occurred. 

A typical velocity profile (upstream in the lower half of the flow) is shown in 
figure A3. The shape of this was obtained from photographs of the distortion of 
a vertical dye streak. The Richardson number is computed from the known 
density gradient and the inferred velocity gradient over the central range of 
heights: 

1 
N2 7 2  sin2 a ' R =  

where r = time of tilt, a = angle of tilt. The thickness of the viscous boundary 
layers on the upper and lower surfaces can be clearly estimated. This increased 
with time to a maximum of about 1 ern just before flow reversal. For figure A2, 
plate 2, the velocity profile was very similar, only the Richardson number was 
different. 

The photographs confirm the following predictions of theory (see also Booker 
& Bretherton 1967). 
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(i) If R > &, the lee waves are confined entirely to the region below the 
critical level downstream of the obstacle. For the Richardson numbers in the 
experiments (0.5-200) the amplitude of the wave transmitted to the upper half 
of the fluid is so small as not to be detectable. 

(ii) The amplitude decays rapidly downstream, indicating absorption of 
wave energy. 

(iii) The wave crests tilt forward with increasing x ,  indicating an upward 
component of group velocity. 

(iv) The wave amplitude increases with z to a maximum just below the viscous 
layer where absorption is taking place (particularly marked in figure A2). 
According to theory, in the inviscid region the vertical velocities decrease as 
the square root of the distance as the critical level is approached, but the vertical 
displacements increase. 

It is also worth noting that in figure A3 the wave amplitude is probably too 
large for linearized theory to be applicable in the critical layer. Although a 
little fluid just above the critical level is involved in the wave motion, there is 
still no detectable wave transmission to the upper part of the flow. 

Further experiments on this and other problems relating to the stability of 
stratified shear flow in a rectangular tank are being made by one of the authors 
(S. A. T.), and the results will be published later. With the present apparatus it 
proved impossible to achieve a steady wave pattern with Richardson number less 
than 1. This would, of course, provide a critical test for the theory. 

R E F E R E N C E S  

BOOKER, J. R. & BRETHERTON, F. P. 1967 J .  Fluid Mech. 27, 513. 
BRETHERTON, F. P. 1966 Quart. J .  Roy. Met. SOC. 92, 394. 
HUGHES, T. H. & REID, W. H .  1967 To appear in Phil. Trans. 
JONES, WALTER L. 1967 J .  Fluid Mech. 30, 439. 
KOPPEL, D. 1964 J .  Math. Phys. 5,963. 
OSTER, 0. 1965 Sci. American, 212, no. 2, p. 70. 



HAZEL 

Plccte 1 

(Facing p .  784) 



Plfltf? 2 

HAZEL 




